
-----zlib 1.1.3-----

Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,

including commercial applications, and to alter it and redistribute it

freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not

claim that you wrote the original software. If you use this software

in a product, an acknowledgment in the product documentation would be

appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be

misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler

jloup@gzip.org madler@alumni.caltech.edu

-----MD4-----

Network Working Group R. Rivest

Request for Comments: 1186 MIT Laboratory for Computer Science

October 1990

The MD4 Message Digest Algorithm

Status of this Memo

This RFC is the specification of the MD4 Digest Algorithm. If you

are going to implement MD4, it is suggested you do it this way. This

memo is for informational use and does not constitute a standard.

Distribution of this memo is unlimited.

Table of Contents

1. Abstract .. 1

2. Terminology and Notation 2

3. MD4 Algorithm Description 2

4. Extensions .. 6

5. Summary ... 7

6. Acknowledgements .. 7

APPENDIX - Reference Implementation 7

Security Considerations.. 18

Author’s Address... 18

1. Abstract

This note describes the MD4 message digest algorithm. The algorithm

takes as input an input message of arbitrary length and produces as

output a 128-bit "fingerprint" or "message digest" of the input. It

is conjectured that it is computationally infeasible to produce two

messages having the same message digest, or to produce any message

having a given prespecified target message digest. The MD4 algorithm

is thus ideal for digital signature applications, where a large file

must be "compressed" in a secure manner before being signed with the

RSA public-key cryptosystem.

The MD4 algorithm is designed to be quite fast on 32-bit machines.

On a SUN Sparc station, MD4 runs at 1,450,000 bytes/second. On a DEC

MicroVax II, MD4 runs at approximately 70,000 bytes/second. On a

20MHz 80286, MD4 runs at approximately 32,000 bytes/second. In

addition, the MD4 algorithm does not require any large substitution

tables; the algorithm can be coded quite compactly.

The MD4 algorithm is being placed in the public domain for review and

possible adoption as a standard.

Rivest [Page 1]

RFC 1186 MD4 Message Digest Algorithm October 1990

(Note: The document supersedes an earlier draft. The algorithm

described here is a slight modification of the one described in the

draft.)

2. Terminology and Notation

In this note a "word" is a 32-bit quantity and a byte is an 8-bit

quantity. A sequence of bits can be interpreted in a natural manner

as a sequence of bytes, where each consecutive group of 8 bits is

interpreted as a byte with the high-order (most significant) bit of

each byte listed first. Similarly, a sequence of bytes can be

interpreted as a sequence of 32-bit words, where each consecutive

group of 4 bytes is interpreted as a word with the low-order (least

significant) byte given first.

Let x_i denote "x sub i". If the subscript is an expression, we

surround it in braces, as in x_{i+1}. Similarly, we use ^ for

superscripts (exponentiation), so that x^i denotes x to the i-th

power.

Let the symbol "+" denote addition of words (i.e., modulo- 2^32

addition). Let X <<< s denote the 32-bit value obtained by circularly

shifting (rotating) X left by s bit positions. Let not(X) denote the

bit-wise complement of X, and let X v Y denote the bit-wise OR of X

and Y. Let X xor Y denote the bit-wise XOR of X and Y, and let XY

denote the bit-wise AND of X and Y.

3. MD4 Algorithm Description

We begin by supposing that we have a b-bit message as input, and that

we wish to find its message digest. Here b is an arbitrary

nonnegative integer; b may be zero, it need not be a multiple of 8,

and it may be arbitrarily large. We imagine the bits of the message

written down as follows:

m_0 m_1 ... m_{b-1} .

The following five steps are performed to compute the message digest

of the message.

Step 1. Append padding bits

The message is "padded" (extended) so that its length (in bits)

is congruent to 448, modulo 512. That is, the message is

extended so that it is just 64 bits shy of being a multiple of

512 bits long. Padding is always performed, even if the length

of the message is already congruent to 448, modulo 512 (in

which case 512 bits of padding are added).

Rivest [Page 2]

RFC 1186 MD4 Message Digest Algorithm October 1990

Padding is performed as follows: a single "1" bit is appended

to the message, and then enough zero bits are appended so that

the length in bits of the padded message becomes congruent to

448, modulo 512.

Step 2. Append length

A 64-bit representation of b (the length of the message before

the padding bits were added) is appended to the result of the

previous step. In the unlikely event that b is greater than

2^64, then only the low-order 64 bits of b are used. (These

bits are appended as two 32-bit words and appended low-order

word first in accordance with the previous conventions.)

At this point the resulting message (after padding with bits

and with b) has a length that is an exact multiple of 512 bits.

Equivalently, this message has a length that is an exact

multiple of 16 (32-bit) words. Let M[0 ... N-1] denote the

words of the resulting message, where N is a multiple of 16.

Step 3. Initialize MD buffer

A 4-word buffer (A,B,C,D) is used to compute the message

digest. Here each of A,B,C,D are 32-bit registers. These

registers are initialized to the following values in

hexadecimal, low-order bytes first):

word A: 01 23 45 67

word B: 89 ab cd ef

word C: fe dc ba 98

word D: 76 54 32 10

Step 4. Process message in 16-word blocks

We first define three auxiliary functions that each take

as input three 32-bit words and produce as output one

32-bit word.

f(X,Y,Z) = XY v not(X)Z

g(X,Y,Z) = XY v XZ v YZ

h(X,Y,Z) = X xor Y xor Z

In each bit position f acts as a conditional: if x then y else

z. (The function f could have been defined using + instead of

v since XY and not(X)Z will never have 1’s in the same bit

position.) In each bit position g acts as a majority function:

if at least two of x, y, z are on, then g has a one in that bit

position, else g has a zero. It is interesting to note that if

Rivest [Page 3]

RFC 1186 MD4 Message Digest Algorithm October 1990

the bits of X, Y, and Z are independent and unbiased, the each

bit of f(X,Y,Z) will be independent and unbiased, and similarly

each bit of g(X,Y,Z) will be independent and unbiased. The

function h is the bit-wise "xor" or "parity" function; it has

properties similar to those of f and g.

Do the following:

For i = 0 to N/16-1 do /* process each 16-word block */

For j = 0 to 15 do: /* copy block i into X */

Set X[j] to M[i*16+j].

end /* of loop on j */

Save A as AA, B as BB, C as CC, and D as DD.

[Round 1]

Let [A B C D i s] denote the operation

A = (A + f(B,C,D) + X[i]) <<< s .

Do the following 16 operations:

[A B C D 0 3]

[D A B C 1 7]

[C D A B 2 11]

[B C D A 3 19]

[A B C D 4 3]

[D A B C 5 7]

[C D A B 6 11]

[B C D A 7 19]

[A B C D 8 3]

[D A B C 9 7]

[C D A B 10 11]

[B C D A 11 19]

[A B C D 12 3]

[D A B C 13 7]

[C D A B 14 11]

[B C D A 15 19]

[Round 2]

Let [A B C D i s] denote the operation

A = (A + g(B,C,D) + X[i] + 5A827999) <<< s .

(The value 5A..99 is a hexadecimal 32-bit

constant, written with the high-order digit

first. This constant represents the square

root of 2. The octal value of this constant

is 013240474631. See Knuth, The Art of

Programming, Volume 2 (Seminumerical

Algorithms), Second Edition (1981),

Addison-Wesley. Table 2, page 660.)

Do the following 16 operations:

[A B C D 0 3]

Rivest [Page 4]

RFC 1186 MD4 Message Digest Algorithm October 1990

[D A B C 4 5]

[C D A B 8 9]

[B C D A 12 13]

[A B C D 1 3]

[D A B C 5 5]

[C D A B 9 9]

[B C D A 13 13]

[A B C D 2 3]

[D A B C 6 5]

[C D A B 10 9]

[B C D A 14 13]

[A B C D 3 3]

[D A B C 7 5]

[C D A B 11 9]

[B C D A 15 13]

[Round 3]

Let [A B C D i s] denote the operation

A = (A + h(B,C,D) + X[i] + 6ED9EBA1) <<< s .

(The value 6E..A1 is a hexadecimal 32-bit

constant, written with the high-order digit

first. This constant represents the square

root of 3. The octal value of this constant

is 015666365641. See Knuth, The Art of

Programming, Volume 2 (Seminumerical

Algorithms), Second Edition (1981),

Addison-Wesley. Table 2, page 660.)

Do the following 16 operations:

[A B C D 0 3]

[D A B C 8 9]

[C D A B 4 11]

[B C D A 12 15]

[A B C D 2 3]

[D A B C 10 9]

[C D A B 6 11]

[B C D A 14 15]

[A B C D 1 3]

[D A B C 9 9]

[C D A B 5 11]

[B C D A 13 15]

[A B C D 3 3]

[D A B C 11 9]

[C D A B 7 11]

[B C D A 15 15]

Then perform the following additions:

A = A + AA

B = B + BB

Rivest [Page 5]

RFC 1186 MD4 Message Digest Algorithm October 1990

C = C + CC

D = D + DD

(That is, each of the four registers is incremented by

the value it had before this block was started.)

end /* of loop on i */

Step 5. Output

The message digest produced as output is A,B,C,D. That is, we

begin with the low-order byte of A, and end with the high-order

byte of D.

This completes the description of MD4. A reference

implementation in C is given in the Appendix.

4. Extensions

If more than 128 bits of output are required, then the following

procedure is recommended to obtain a 256-bit output. (There is no

provision made for obtaining more than 256 bits.)

Two copies of MD4 are run in parallel over the input. The first copy

is standard as described above. The second copy is modified as

follows.

The initial state of the second copy is:

word A: 00 11 22 33

word B: 44 55 66 77

word C: 88 99 aa bb

word D: cc dd ee ff

The magic constants in rounds 2 and 3 for the second copy of MD4 are

changed from sqrt(2) and sqrt(3) to cuberoot(2) and cuberoot(3):

Octal Hex

Round 2 constant 012050505746 50a28be6

Round 3 constant 013423350444 5c4dd124

Finally, after every 16-word block is processed (including the last

block), the values of the A registers in the two copies are

exchanged.

The final message digest is obtaining by appending the result of the

second copy of MD4 to the end of the result of the first copy of MD4.

Rivest [Page 6]

RFC 1186 MD4 Message Digest Algorithm October 1990

5. Summary

The MD4 message digest algorithm is simple to implement, and provides

a "fingerprint" or message digest of a message of arbitrary length.

It is conjectured that the difficulty of coming up with two messages

having the same message digest is on the order of 2^64 operations,

and that the difficulty of coming up with any message having a given

message digest is on the order of 2^128 operations. The MD4

algorithm has been carefully scrutinized for weaknesses. It is,

however, a relatively new algorithm and further security analysis is

of course justified, as is the case with any new proposal of this

sort. The level of security provided by MD4 should be sufficient for

implementing very high security hybrid digital signature schemes

based on MD4 and the RSA public-key cryptosystem.

6. Acknowledgements

I’d like to thank Don Coppersmith, Burt Kaliski, Ralph Merkle, and

Noam Nisan for numerous helpful comments and suggestions.

APPENDIX - Reference Implementation

This appendix contains the following files:

md4.h -- header file for using MD4 implementation

md4.c -- the source code for MD4 routines

md4driver.c -- a sample "user" routine

session -- sample results of running md4driver

/*

** **

** md4.h -- Header file for implementation of **

** MD4 Message Digest Algorithm **

** Updated: 2/13/90 by Ronald L. Rivest **

** (C) 1990 RSA Data Security, Inc. **

** **

*/

/* MDstruct is the data structure for a message digest computation.

*/

typedef struct {

unsigned int buffer[4]; /* Holds 4-word result of MD computation */

unsigned char count[8]; /* Number of bits processed so far */

unsigned int done; /* Nonzero means MD computation finished */

} MDstruct, *MDptr;

/* MDbegin(MD)

Rivest [Page 7]

RFC 1186 MD4 Message Digest Algorithm October 1990

** Input: MD -- an MDptr

** Initialize the MDstruct prepatory to doing a message digest

** computation.

*/

extern void MDbegin();

/* MDupdate(MD,X,count)

** Input: MD -- an MDptr

** X -- a pointer to an array of unsigned characters.

** count -- the number of bits of X to use (an unsigned int).

** Updates MD using the first "count" bits of X.

** The array pointed to by X is not modified.

** If count is not a multiple of 8, MDupdate uses high bits of

** last byte.

** This is the basic input routine for a user.

** The routine terminates the MD computation when count < 512, so

** every MD computation should end with one call to MDupdate with a

** count less than 512. Zero is OK for a count.

*/

extern void MDupdate();

/* MDprint(MD)

** Input: MD -- an MDptr

** Prints message digest buffer MD as 32 hexadecimal digits.

** Order is from low-order byte of buffer[0] to high-order byte

** of buffer[3].

** Each byte is printed with high-order hexadecimal digit first.

*/

extern void MDprint();

/*

** End of md4.h

****************************(cut)***********************************/

/*

** **

** md4.c -- Implementation of MD4 Message Digest Algorithm **

** Updated: 2/16/90 by Ronald L. Rivest **

** (C) 1990 RSA Data Security, Inc. **

** **

*/

/*

** To use MD4:

** -- Include md4.h in your program

** -- Declare an MDstruct MD to hold the state of the digest

** computation.

** -- Initialize MD using MDbegin(&MD)

Rivest [Page 8]

RFC 1186 MD4 Message Digest Algorithm October 1990

** -- For each full block (64 bytes) X you wish to process, call

** MDupdate(&MD,X,512)

** (512 is the number of bits in a full block.)

** -- For the last block (less than 64 bytes) you wish to process,

** MDupdate(&MD,X,n)

** where n is the number of bits in the partial block. A partial

** block terminates the computation, so every MD computation

** should terminate by processing a partial block, even if it

** has n = 0.

** -- The message digest is available in MD.buffer[0] ...

** MD.buffer[3]. (Least-significant byte of each word

** should be output first.)

** -- You can print out the digest using MDprint(&MD)

*/

/* Implementation notes:

** This implementation assumes that ints are 32-bit quantities.

** If the machine stores the least-significant byte of an int in the

** least-addressed byte (e.g., VAX and 8086), then LOWBYTEFIRST

** should be set to TRUE. Otherwise (e.g., SUNS), LOWBYTEFIRST

** should be set to FALSE. Note that on machines with LOWBYTEFIRST

** FALSE the routine MDupdate modifies has a side-effect on its input

** array (the order of bytes in each word are reversed). If this is

** undesired a call to MDreverse(X) can reverse the bytes of X back

** into order after each call to MDupdate.

*/

#define TRUE 1

#define FALSE 0

#define LOWBYTEFIRST FALSE

/* Compile-time includes

*/

#include <stdio.h>

#include "md4.h"

/* Compile-time declarations of MD4 "magic constants".

*/

#define I0 0x67452301 /* Initial values for MD buffer */

#define I1 0xefcdab89

#define I2 0x98badcfe

#define I3 0x10325476

#define C2 013240474631 /* round 2 constant = sqrt(2) in octal */

#define C3 015666365641 /* round 3 constant = sqrt(3) in octal */

/* C2 and C3 are from Knuth, The Art of Programming, Volume 2

** (Seminumerical Algorithms), Second Edition (1981), Addison-Wesley.

** Table 2, page 660.

*/

Rivest [Page 9]

RFC 1186 MD4 Message Digest Algorithm October 1990

#define fs1 3 /* round 1 shift amounts */

#define fs2 7

#define fs3 11

#define fs4 19

#define gs1 3 /* round 2 shift amounts */

#define gs2 5

#define gs3 9

#define gs4 13

#define hs1 3 /* round 3 shift amounts */

#define hs2 9

#define hs3 11

#define hs4 15

/* Compile-time macro declarations for MD4.

** Note: The "rot" operator uses the variable "tmp".

** It assumes tmp is declared as unsigned int, so that the >>

** operator will shift in zeros rather than extending the sign bit.

*/

#define f(X,Y,Z) ((X&Y) | ((~X)&Z))

#define g(X,Y,Z) ((X&Y) | (X&Z) | (Y&Z))

#define h(X,Y,Z) (X^Y^Z)

#define rot(X,S) (tmp=X,(tmp<<S) | (tmp>>(32-S)))

#define ff(A,B,C,D,i,s) A = rot((A + f(B,C,D) + X[i]),s)

#define gg(A,B,C,D,i,s) A = rot((A + g(B,C,D) + X[i] + C2),s)

#define hh(A,B,C,D,i,s) A = rot((A + h(B,C,D) + X[i] + C3),s)

/* MDprint(MDp)

** Print message digest buffer MDp as 32 hexadecimal digits.

** Order is from low-order byte of buffer[0] to high-order byte of

** buffer[3].

** Each byte is printed with high-order hexadecimal digit first.

** This is a user-callable routine.

*/

void

MDprint(MDp)

MDptr MDp;

{ int i,j;

for (i=0;i<4;i++)

for (j=0;j<32;j=j+8)

printf("%02x",(MDp->buffer[i]>>j) & 0xFF);

}

/* MDbegin(MDp)

** Initialize message digest buffer MDp.

** This is a user-callable routine.

*/

void

MDbegin(MDp)

Rivest [Page 10]

RFC 1186 MD4 Message Digest Algorithm October 1990

MDptr MDp;

{ int i;

MDp->buffer[0] = I0;

MDp->buffer[1] = I1;

MDp->buffer[2] = I2;

MDp->buffer[3] = I3;

for (i=0;i<8;i++) MDp->count[i] = 0;

MDp->done = 0;

}

/* MDreverse(X)

** Reverse the byte-ordering of every int in X.

** Assumes X is an array of 16 ints.

** The macro revx reverses the byte-ordering of the next word of X.

*/

#define revx { t = (*X << 16) | (*X >> 16); ¥

*X++ = ((t & 0xFF00FF00) >> 8) | ((t & 0x00FF00FF) << 8); }

MDreverse(X)

unsigned int *X;

{ register unsigned int t;

revx; revx; revx; revx; revx; revx; revx; revx;

revx; revx; revx; revx; revx; revx; revx; revx;

}

/* MDblock(MDp,X)

** Update message digest buffer MDp->buffer using 16-word data block X.

** Assumes all 16 words of X are full of data.

** Does not update MDp->count.

** This routine is not user-callable.

*/

static void

MDblock(MDp,X)

MDptr MDp;

unsigned int *X;

{

register unsigned int tmp, A, B, C, D;

#if LOWBYTEFIRST == FALSE

MDreverse(X);

#endif

A = MDp->buffer[0];

B = MDp->buffer[1];

C = MDp->buffer[2];

D = MDp->buffer[3];

/* Update the message digest buffer */

ff(A , B , C , D , 0 , fs1); /* Round 1 */

ff(D , A , B , C , 1 , fs2);

ff(C , D , A , B , 2 , fs3);

ff(B , C , D , A , 3 , fs4);

Rivest [Page 11]

RFC 1186 MD4 Message Digest Algorithm October 1990

ff(A , B , C , D , 4 , fs1);

ff(D , A , B , C , 5 , fs2);

ff(C , D , A , B , 6 , fs3);

ff(B , C , D , A , 7 , fs4);

ff(A , B , C , D , 8 , fs1);

ff(D , A , B , C , 9 , fs2);

ff(C , D , A , B , 10 , fs3);

ff(B , C , D , A , 11 , fs4);

ff(A , B , C , D , 12 , fs1);

ff(D , A , B , C , 13 , fs2);

ff(C , D , A , B , 14 , fs3);

ff(B , C , D , A , 15 , fs4);

gg(A , B , C , D , 0 , gs1); /* Round 2 */

gg(D , A , B , C , 4 , gs2);

gg(C , D , A , B , 8 , gs3);

gg(B , C , D , A , 12 , gs4);

gg(A , B , C , D , 1 , gs1);

gg(D , A , B , C , 5 , gs2);

gg(C , D , A , B , 9 , gs3);

gg(B , C , D , A , 13 , gs4);

gg(A , B , C , D , 2 , gs1);

gg(D , A , B , C , 6 , gs2);

gg(C , D , A , B , 10 , gs3);

gg(B , C , D , A , 14 , gs4);

gg(A , B , C , D , 3 , gs1);

gg(D , A , B , C , 7 , gs2);

gg(C , D , A , B , 11 , gs3);

gg(B , C , D , A , 15 , gs4);

hh(A , B , C , D , 0 , hs1); /* Round 3 */

hh(D , A , B , C , 8 , hs2);

hh(C , D , A , B , 4 , hs3);

hh(B , C , D , A , 12 , hs4);

hh(A , B , C , D , 2 , hs1);

hh(D , A , B , C , 10 , hs2);

hh(C , D , A , B , 6 , hs3);

hh(B , C , D , A , 14 , hs4);

hh(A , B , C , D , 1 , hs1);

hh(D , A , B , C , 9 , hs2);

hh(C , D , A , B , 5 , hs3);

hh(B , C , D , A , 13 , hs4);

hh(A , B , C , D , 3 , hs1);

hh(D , A , B , C , 11 , hs2);

hh(C , D , A , B , 7 , hs3);

hh(B , C , D , A , 15 , hs4);

MDp->buffer[0] += A;

MDp->buffer[1] += B;

MDp->buffer[2] += C;

MDp->buffer[3] += D;

Rivest [Page 12]

RFC 1186 MD4 Message Digest Algorithm October 1990

}

/* MDupdate(MDp,X,count)

** Input: MDp -- an MDptr

** X -- a pointer to an array of unsigned characters.

** count -- the number of bits of X to use.

** (if not a multiple of 8, uses high bits of last byte.)

** Update MDp using the number of bits of X given by count.

** This is the basic input routine for an MD4 user.

** The routine completes the MD computation when count < 512, so

** every MD computation should end with one call to MDupdate with a

** count less than 512. A call with count 0 will be ignored if the

** MD has already been terminated (done != 0), so an extra call with

** count 0 can be given as a "courtesy close" to force termination

** if desired.

*/

void

MDupdate(MDp,X,count)

MDptr MDp;

unsigned char *X;

unsigned int count;

{ unsigned int i, tmp, bit, byte, mask;

unsigned char XX[64];

unsigned char *p;

/* return with no error if this is a courtesy close with count

** zero and MDp->done is true.

*/

if (count == 0 && MDp->done) return;

/* check to see if MD is already done and report error */

if (MDp->done)

{ printf("¥nError: MDupdate MD already done."); return; }

/* Add count to MDp->count */

tmp = count;

p = MDp->count;

while (tmp)

{ tmp += *p;

*p++ = tmp;

tmp = tmp >> 8;

}

/* Process data */

if (count == 512)

{ /* Full block of data to handle */

MDblock(MDp,(unsigned int *)X);

}

else if (count > 512) /* Check for count too large */

{ printf("¥nError: MDupdate called with illegal count value %d."

,count);

return;

Rivest [Page 13]

RFC 1186 MD4 Message Digest Algorithm October 1990

}

else /* partial block -- must be last block so finish up */

{ /* Find out how many bytes and residual bits there are */

byte = count >> 3;

bit = count & 7;

/* Copy X into XX since we need to modify it */

for (i=0;i<=byte;i++) XX[i] = X[i];

for (i=byte+1;i<64;i++) XX[i] = 0;

/* Add padding ’1’ bit and low-order zeros in last byte */

mask = 1 << (7 - bit);

XX[byte] = (XX[byte] | mask) & ~(mask - 1);

/* If room for bit count, finish up with this block */

if (byte <= 55)

{ for (i=0;i<8;i++) XX[56+i] = MDp->count[i];

MDblock(MDp,(unsigned int *)XX);

}

else /* need to do two blocks to finish up */

{ MDblock(MDp,(unsigned int *)XX);

for (i=0;i<56;i++) XX[i] = 0;

for (i=0;i<8;i++) XX[56+i] = MDp->count[i];

MDblock(MDp,(unsigned int *)XX);

}

/* Set flag saying we’re done with MD computation */

MDp->done = 1;

}

}

/*

** End of md4.c

****************************(cut)***********************************/

/*

** **

** md4driver.c -- sample routines to test **

** MD4 message digest algorithm. **

** Updated: 2/16/90 by Ronald L. Rivest **

** (C) 1990 RSA Data Security, Inc. **

** **

*/

#include <stdio.h>

#include "md4.h"

/* MDtimetrial()

** A time trial routine, to measure the speed of MD4.

** Measures speed for 1M blocks = 64M bytes.

*/

MDtimetrial()

Rivest [Page 14]

RFC 1186 MD4 Message Digest Algorithm October 1990

{ unsigned int X[16];

MDstruct MD;

int i;

double t;

for (i=0;i<16;i++) X[i] = 0x01234567 + i;

printf

("MD4 time trial. Processing 1 million 64-character blocks...¥n");

clock();

MDbegin(&MD);

for (i=0;i<1000000;i++) MDupdate(&MD,X,512);

MDupdate(&MD,X,0);

t = (double) clock(); /* in microseconds */

MDprint(&MD); printf(" is digest of 64M byte test input.¥n");

printf("Seconds to process test input: %g¥n,t/1e6);

printf("Characters processed per second: %ld.¥n,(int)(64e12/t));

}

/* MDstring(s)

** Computes the message digest for string s.

** Prints out message digest, a space, the string (in quotes) and a

** carriage return.

*/

MDstring(s)

unsigned char *s;

{ unsigned int i, len = strlen(s);

MDstruct MD;

MDbegin(&MD);

for (i=0;i+64<=len;i=i+64) MDupdate(&MD,s+i,512);

MDupdate(&MD,s+i,(len-i)*8);

MDprint(&MD);

printf(" ¥"%s¥"¥n",s);

}

/* MDfile(filename)

** Computes the message digest for a specified file.

** Prints out message digest, a space, the file name, and a

** carriage return.

*/

MDfile(filename)

char *filename;

{ FILE *f = fopen(filename,"rb");

unsigned char X[64];

MDstruct MD;

int b;

if (f == NULL)

{ printf("%s can’t be opened.¥n",filename); return; }

MDbegin(&MD);

while ((b=fread(X,1,64,f))!=0) MDupdate(&MD,X,b*8);

Rivest [Page 15]

RFC 1186 MD4 Message Digest Algorithm October 1990

MDupdate(&MD,X,0);

MDprint(&MD);

printf(" %s¥n",filename);

fclose(f);

}

/* MDfilter()

** Writes the message digest of the data from stdin onto stdout,

** followed by a carriage return.

*/

MDfilter()

{ unsigned char X[64];

MDstruct MD;

int b;

MDbegin(&MD);

while ((b=fread(X,1,64,stdin))!=0) MDupdate(&MD,X,b*8);

MDupdate(&MD,X,0);

MDprint(&MD);

printf("¥n");

}

/* MDtestsuite()

** Run a standard suite of test data.

*/

MDtestsuite()

{

printf("MD4 test suite results:¥n");

MDstring("");

MDstring("a");

MDstring("abc");

MDstring("message digest");

MDstring("abcdefghijklmnopqrstuvwxyz");

MDstring

("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");

MDfile("foo"); /* Contents of file foo are "abc" */

}

main(argc,argv)

int argc;

char *argv[];

{ int i;

/* For each command line argument in turn:

** filename -- prints message digest and name of file

** -sstring -- prints message digest and contents of string

** -t -- prints time trial statistics for 64M bytes

** -x -- execute a standard suite of test data

** (no args) -- writes messages digest of stdin onto stdout

*/

Rivest [Page 16]

RFC 1186 MD4 Message Digest Algorithm October 1990

if (argc==1) MDfilter();

else

for (i=1;i<argc;i++)

if (argv[i][0]==’-’ && argv[i][1]==’s’) MDstring(argv[i]+2);

else if (strcmp(argv[i],"-t")==0) MDtimetrial();

else if (strcmp(argv[i],"-x")==0) MDtestsuite();

else MDfile(argv[i]);

}

/*

** end of md4driver.c

****************************(cut)***********************************/

--

--- Sample session. Compiling and using MD4 on SUN Sparcstation ---

--

>ls

total 66

-rw-rw-r-- 1 rivest 3 Feb 14 17:40 abcfile

-rwxrwxr-x 1 rivest 24576 Feb 17 12:28 md4

-rw-rw-r-- 1 rivest 9347 Feb 17 00:37 md4.c

-rw-rw-r-- 1 rivest 25150 Feb 17 12:25 md4.doc

-rw-rw-r-- 1 rivest 1844 Feb 16 21:21 md4.h

-rw-rw-r-- 1 rivest 3497 Feb 17 12:27 md4driver.c

>

>cc -o md4 -O4 md4.c md4driver.c

md4.c:

md4driver.c:

Linking:

>

>md4 -x

MD4 test suite results:

31d6cfe0d16ae931b73c59d7e0c089c0 ""

bde52cb31de33e46245e05fbdbd6fb24 "a"

a448017aaf21d8525fc10ae87aa6729d "abc"

d9130a8164549fe818874806e1c7014b "message digest"

d79e1c308aa5bbcdeea8ed63df412da9 "abcdefghijklmnopqrstuvwxyz"

043f8582f241db351ce627e153e7f0e4

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"

a448017aaf21d8525fc10ae87aa6729d abcfile

>

>md4 -sabc -shi

a448017aaf21d8525fc10ae87aa6729d "abc"

cfaee2512bd25eb033236f0cd054e308 "hi"

>

>md4 *

a448017aaf21d8525fc10ae87aa6729d abcfile

Rivest [Page 17]

RFC 1186 MD4 Message Digest Algorithm October 1990

d316f994da0e951cf9502928a1f73300 md4

379adb39eada0dfdbbdfdcd0d9def8c4 md4.c

9a3f73327c65954198b1f45a3aa12665 md4.doc

37fe165ac177b461ff78b86d10e4ff33 md4.h

7dcba2e2dc4d8f1408d08beb17dabb2a md4.o

08790161bfddc6f5788b4353875cb1c3 md4driver.c

1f84a7f690b0545d2d0480d5d3c26eea md4driver.o

>

>cat abcfile | md4

a448017aaf21d8525fc10ae87aa6729d

>

>md4 -t

MD4 time trial. Processing 1 million 64-character blocks...

6325bf77e5891c7c0d8104b64cc6e9ef is digest of 64M byte test input.

Seconds to process test input: 44.0982

Characters processed per second: 1451305.

>

>

------------------------ end of sample session --------------------

Note: A version of this document including the C source code is

available for FTP from THEORY.LSC.MIT.EDU in the file "md4.doc".

Security Considerations

The level of security discussed in this memo by MD4 is considered to

be sufficient for implementing very high security hybrid digital

signature schemes based on MD4 and the RSA public-key cryptosystem.

Author’s Address

Ronald L. Rivest

Massachusetts Institute of Technology

Laboratory for Computer Science

NE43-324

545 Technology Square

Cambridge, MA 02139-1986

Phone: (617) 253-5880

EMail: rivest@theory.lcs.mit.edu

Rivest [Page 18]

-----MD5-----

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.

 *

 * License to copy and use this software is granted provided that it

 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest

 * Algorithm" in all material mentioning or referencing this software or this function.

 *

 * License is also granted to make and use derivative works provided that such works

 * are identified as "derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material

 * mentioning or referencing the derived work.

 *

 * RSA Data Security, Inc. makes no representations concerning either the merchantability of this software

 * or the suitability of this software for any particular purpose.

 * It is provided "as is"without express or implied warranty of any kind.

 *

 * These notices must be retained in any copies of any part of this

 * documentation and/or software.

 */

-----libcurl-----

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1996 - 2006, Daniel Stenberg, <daniel@haxx.se>.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose

with or without fee is hereby granted, provided that the above copyright

notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN

NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE

OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not

be used in advertising or otherwise to promote the sale, use or other dealings

in this Software without prior written authorization of the copyright holder.

-----FreeBSD-----

/*

 * Copyright (c) 1998 Todd C. Miller <Todd.Miller@courtesan.com>

 * All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions

 * are met:

 * 1. Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 * 2. Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in the

 * documentation and/or other materials provided with the distribution.

 * 3. The name of the author may not be used to endorse or promote products

 * derived from this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,

 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 */

-----DES-----

/* Copyright (C) 1995 Eric Young (eay@mincom.oz.au) All rights reserved.

 *

 * This file is part of an SSL implementation written by Eric Young (eay@mincom.oz.au).

 * The implementation was written so as to conform with Netscapes SSL specification.

 * This library and applications are FREE FOR COMMERCIAL AND NON-COMMERCIAL USE

 * as long as the following conditions are aheared to.

 *

 * Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed.

 * If this code is used in a product, Eric Young should be given attribution as the author of the parts used.

 * This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the

package.

 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following

conditions are met:

 * 1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

 * 2. Redistributions in binary form must reproduce the above copyright notice,

 * this list of conditions and the following disclaimer in the documentation and/or other materials provided with the

distribution.

 * 3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

 * This product includes software developed by Eric Young (eay@mincom.oz.au)

 *

 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND

 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 *

 * The licence and distribution terms for any publically available version or derivative of this code cannot be changed.

 * i.e. this code cannot simply be copied and put under another distribution licence

 * [including the GNU Public Licence.]

 */

-----Google Test 1.5.0-----

The BSD 2-Clause License i Open Source Initiative

 The following is a BSD 2-Clause license template. To generate your own license, change the values of

 OWNER and YEAR from their original values as given here, and substitute your own.

 Note: see also the BSD-3-Clause license.

 This prelude is not part of the license.

<OWNER> = Regents of the University of California

<YEAR> = 1998

In the original BSD license, both occurrences of the phrase "COPYRIGHT HOLDERS AND

CONTRIBUTORS" in the disclaimer read "REGENTS AND CONTRIBUTORS".

Here is the license template:

Copyright (c) <YEAR>, <OWNER>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that

the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ES" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

OF SUCH DAMAGE.

-----Google Mock 1.5.0-----

The BSD 2-Clause License i Open Source Initiative

 The following is a BSD 2-Clause license template. To generate your own license, change the values of

 OWNER and YEAR from their original values as given here, and substitute your own.

 Note: see also the BSD-3-Clause license.

 This prelude is not part of the license.

<OWNER> = Regents of the University of California

<YEAR> = 1998

In the original BSD license, both occurrences of the phrase "COPYRIGHT HOLDERS AND

CONTRIBUTORS" in the disclaimer read "REGENTS AND CONTRIBUTORS".

Here is the license template:

Copyright (c) <YEAR>, <OWNER>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that

the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ES" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

OF SUCH DAMAGE.

-----boost 1.45.0-----

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization

obtaining a copy of the software and accompanying documentation covered by

this license (the "Software") to use, reproduce, display, distribute,

execute, and transmit the Software, and to prepare derivative works of the

Software, and to permit third-parties to whom the Software is furnished to

do so, all subject to the following:

The copyright notices in the Software and this entire statement, including

the above license grant, this restriction and the following disclaimer,

must be included in all copies of the Software, in whole or in part, and

all derivative works of the Software, unless such copies or derivative

works are solely in the form of machine-executable object code generated by

a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT

SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE

FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

